On the Chromatic Number of Matching Kneser Graphs
نویسندگان
چکیده
منابع مشابه
The Distinguishing Chromatic Number of Kneser Graphs
A labeling f : V (G) → {1, 2, . . . , d} of the vertex set of a graph G is said to be proper d-distinguishing if it is a proper coloring of G and any nontrivial automorphism of G maps at least one vertex to a vertex with a different label. The distinguishing chromatic number of G, denoted by χD(G), is the minimum d such that G has a proper d-distinguishing labeling. Let χ(G) be the chromatic nu...
متن کاملCircular chromatic number of Kneser graphs
This paper proves that for any positive integer n, if m is large enough, then the reduced Kneser graph KG2(m, n) has its circular chromatic number equal its chromatic number. This answers a question of Lih and Liu [J. Graph Theory, 2002]. For Kneser graphs, we prove that if m ≥ 2n2(n − 1), then KG(m, n) has its circular chromatic number equal its chromatic number. This provides strong support f...
متن کاملOn the chromatic number of q-Kneser graphs
We show that the q-Kneser graph q K2k:k (the graph on the k-subspaces of a 2k-space over G F(q), where two k-spaces are adjacent when they intersect trivially), has chromatic number qk + qk−1 for k = 3 and for k < q log q − q . We obtain detailed results on maximal cocliques for k = 3.
متن کاملOn the b-chromatic number of Kneser graphs
In this note, we prove that for any integer n ≥ 3 the b-chromatic number of the Kneser graph KG(m,n) is greater than or equal to 2 ( ⌊m 2 ⌋
متن کاملOn the chromatic number of some geometric type Kneser graphs
We estimate the chromatic number of graphs whose vertex set is the set of edges of a complete geometric graph on n points, and adjacency is defined in terms of geometric disjointness or geometric intersection.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Combinatorics, Probability and Computing
سال: 2019
ISSN: 0963-5483,1469-2163
DOI: 10.1017/s0963548319000178